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Abstract: Given a graph G = (N,E) and aAlength function 1 : E —~> R, the
Graphical Traveling Salesman Problem is that of finding a minimum length
cycle going at, least once through each node of G. This formulation has
advantages over the traditional formulation where each node must be
visited exact'ly once.ﬂl;;“:;.ve some facet inducing inequalities of the
convex hull of the solutions to that problenm. Some related integer
polyhedra are also investigated. Finally, an efficient algorithm is given

.

when G 1s a series-parallel graph.
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1. Introduction
Consider a graph G = (N,E) and a function 1: E ==> R which associates

the length 1(e) to each edge e ¢ E. The classical Traveling Salesman

Problem, denoted by TSP, is that of finding a Hamilton cycle (N,H) of G

such that 1(H) s £ 1(e) is minimum. (A Hamilton cycle of G is a cycle
eeH

going exactly once through each node of G.) The Traveling Salesman
Problem derives its name from the following interpretation: the nodes of
G represent cities that must be visited by a salesman and the edges
represent roads or other transportation links connecting the cities., One
of the cities is the traveling salesman's hometown from which he starts

his tour and to which he must return.

Two difficulties arise in stating the TSP as above. First, the graph ¢

G may not be Hamiltonian (i.e., G may not have a Hamilton cycle.) Second, : ‘
even when G is Hamiltonian, the shortest way to visit all the nodes of G ‘ ‘E'\-::‘\-
may not be to follow a Hamilton cycle. Instead, it may be shorter to go \
through some nodes more than once and/or use some edges more than once. '
The traditional way to overcome these difficulties is to transform G
into a complete graph K = (N,F) on the same node set. The length function
1 : F —> R is defined as follows: for every e ¢ F, 1(e) is the length of R
the shortest path of G joining the endpoints of e. Solving the TSP on K *
instead of G clearly resolves the two difficulties just mentioned. Most ,'::'.
of the existing literature on the TSP assumes an underlying complete graph. r
However, the transformation of G into K has two drawbacks of its own.

In most solution techniques a variable is associated with each edge of the '::::
graph. Therefore, the TSP on K requires (|N|=1){N{/2 variables even when v
the originsl graph is spa;se == which is often the case in applications ,\._
(Mony applications 1nvolvc/\¢::rphs or graphs with small thickness), The '%"1
R ISR 2 RO R PR S RN . B
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Second drawback is that the original problem on G may be easier to solve
than the TSP on a complete graph. For example, Ratliff and Rosenthal ([7)
present a linear time algorithm for a version of the TSP that arises in
the context of order picking in a rectangle warehouse. Their algorithm
exploits the structure of the underlying graph G. We extend their results
in Section 5. Another class of graphs for which the TSP can be solved in
linear time is given in Cornuejols, Naddef and Pulleyblank [2]. For these
reasons we prefer to avoid using the complete graph K. We propose a
different way to overcome the deficiencies associated with the classical
formulation of the TSP, Our approach is to introduce a new version of the
TSP which we call the Graphical Traveling Salesman Problem. This
formulation has also been used successfully by Fleischmann [4].

A tour of a connected graph G is a cycle going at least once through
each node of G. (Here a cycle may use the same node or the same edge more

k
than once.) The length of a tour T:(vl,ev...,vk.ek.v‘) is I(T) = I 1(e,).
i=1

The Graphical Traveling Salesman Problem, denoted by GTSP, consists in

finding a tour of G whose length is minimum. Of course GTSP is NP-hard,
since, given a graph G, the solution of GTSP with the length function
1(e) = 1 for all e ¢ E, would show whether G is Hamiltonian, a known
NP-complete problem.

A graph is Eulerian if it is connected and each of its nodes is
incident with an even number of edges. It is well known and easy to prove
that if a graph is Eulerian, then it contains a tour using each edge
exactly once [1]. Conversely, given a cycle T, the graph H induced by the
edges of T duplicated as many times as they are used in T, is an Eulerian

graph., If T is a tour of G, then H spans all the nodes of G. In other
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words, the tours of G correspond to the spanning Eulerian graphs obtained
from the graph G by removing some edges and duplicating others.

If an edge of G has a negative length, then one can obtain tours of
length as small as wanted by using this edge an indefinite number of
times. In other words, there is no finite optimum solution. In the
remainder we assume that all edge lengths are nonnegative, With this
assumption it can be shown that there is an optimum solution using any
edge at most twice, (Let T be some tour of G where some edge e is used
three times or more, Consider the edge set obtained by taking the edges
of T duplicated as many times as they are used in T and by removing two
copies of e. The graph induced by thi# edge set is Eulerian and spanning.
So it can be traversed by a tour T'. Clearly, 1(T') = 1(T)-21(e)<1(T).)

To each tour of G we associate an integral vector x = (xe: e ¢ E)
where X, is the number of times that edge e occurs in the tour. In terms

of x, the length of a tour is simply I 1(e)x,. Note that there is a
ecE

one-to-one correspondence between the vectors x associated with tours and
the spanning Eulerian graphs defined two paragraphs earlier. In general,
however, the same vector x can be associated with several tours., (For

example, 1f G is a star and x, = 2 for all e ¢ E, the tours associated

e
with x can visit the branches of the atar in any order.) Nonetheless, we

will call the vector x associated with a tour, a tour itself.

In this paper, for UG E, x(U) denotes Xq. For S¢ N, v(S)
eel

denotes the set of edges with both ends in S and §(S) those with exactly
one end in 8. Also, &({v}) is abbreviated by &(v). Given a finite set J,

BJ denotes the set of vectors x = (sz J ¢'J) whose coordinates are real

valued and indexed by the elements of J.
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With this notation, the tours of G are those vectors x ¢ BE which

satisfy

(1.1) Xq 2 0 and integer for all e ¢ E,

(1.2) x(8(v)) is a positive even integer for all v ¢ N,

(1.3) "the graph induced by the edges such that Xq > 0 is connected,

Conditions (1.2) and (1.3) follow from the fact that the graph

obtained from G by making x_ copies of edge e must be Eulerian and

e
spanning. An equivalent characterization of tours is given next.

An edge cutset UG E of G is a set of edges such that U = §&(S) =
8(N-S) for some nonempty S &€ N. The sets S and N-S are called the shores
of the edge cutset U. A vector x ¢ RE is a tour if and only if it
satisfies conditions (1.1), (1.2), and
(1.8) x(U) > 2 for every edge cutset U of G.

This condition follows from the fact that a tour corresponds to a
spamning cycle of G and cycles have even cardinality intersections with
every edge cutset.

" The convex hull of the tours of G yill be denoted py GTSP(G). Note
that this polyhedron 1is not bounded and that the classical traveling
salesman polytope TSP(G) =-- namely the convex hulg:g::idence vectors of
the Hamiltonfam cycles of G -- 1s a face of the polyhedron GTSP(G). In
fact TSP(G) = GTSP(G) N {x ¢R" : x(E) = INI}.

In Section 2 we show that, when G is connected, the polyhedron
GTSP(G) is full-dimensional, i.e., it has dimension |E|. The inequalities
(1.4) define facets (i.e., faces of dimension |E|=1) of this polyhedron if
and only if the graphs induced by the shores of the edge cutset are both

connected. These facets are in fact the subtour elimination inequalities

which have become usual in the definition of TSP(G).
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The main result of Section 3 is a class of valid inequalities, called

"path inequalities”, for GTSP(G) which are shown to generalize the comb
inequalities for TSP(G), see Grotschel and Padberg [6]. Other classes of
facets are also presented in that section. ¥

In Section U4 we introduce four polyhedra which are related to
GTSP(G). In particular we give a full description of P,(G) = convix ¢ RE :
(1.1) and (1.2) hold} and P2(G) = convix ¢ RE ¢t (1.1) and (1.3) hold}.
The polyhedron Py(G) = convix e 8E : (1.1) and (1.4) hold} contains TSP(G)
as a face and is also studied.

In Section 5 we introduce a generalization of the graphical traveling
salesman problem., In addition to the graph G and the length function 1,
we are given a subset V& N of the nodes. A Steiner tour is a cycle going

at least once through each node of V, Houever,'the cycle is not required

to pass through the nodes of N-V. The Steiner Traveling Salesman Problem,

denoted by STSP, consists in finding a Steiner tour of minimum length. Of

course GTSP 1Is the special case of STSP where V=N. We give an efficient

algorithm to solve STSP in series-parallel graphs.

2. The Graphical Traveling Salesman Polyhedron

Full-dimensional polyhedra have the desirable property that a minimal
set of defining inequalities is unique up to scaling any inequality by a
positive constant. Moreover, in such a set, each inequality induces a
facet, In other words, each facet has a unique description by a linear
inequality, up to scaling by a constant, Of course, this is no longer
true when the polyhedron is not full-dimensional. First, we show that the
graphical traveling salesman polyhedron, GTSP(G), is full-dimensional 1if

and only if G is a connected graph. Then we show that the convex hull of
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ra the extreme points of GTSP(G) is a full-dimensional polytope if anJonly if S
N e

G 1s a connected bridgeless graph, (A bridge is an edge cutset of

cardinality one,) Other results relating the connectivity of G to the TSP

can be found in [5].

Theorem 2.1 If G is a connected graph, then GTSP(G) is full-dimensional. '

2 Otherwise GTSP(G) is empty. | '
e

Proof: If G is not connected, no tour exists, If G is connected, then

.:':;:::
consider any tour x and the |E| tours x¢2y1 where yi is the unit vector e

such that yi=1 and y}-.o for j#i. These |El+1 are affinely independent. @

Theorem 2.2 Let G be a conn_ected graph with k bridges. The convex hull
_ of the extreme points of GTSP(G) is a polytope of dimension [E|-k. .
Proof: It follows from the remarks made in the introduction that every ,,{_
v extreme point x of GTSP(G) has components Xe which take the value 0,1, or o
2 for every e ¢ E, If e is a bridge, then Xy = 2 as a consequence of
. condition (1.4), ”
- Denote by P(G) the convex hull of the extreme points of GTSP(G). We
have just shown that, if G has k bridges, then dim P(G) < |El=k. '\,
Conversely, we show that dim P(G) > |E|l~k by induction on the number ,ti
::i of edges of G. The property is true when [E| = 1. Now take a connected ;::: =
E: graph G = (N,E). Let k be the number of bridges of G and let e be an edge :};‘:
- such that the graph induced by the edge set E-{e] is connected. We denote r"""
: this graph by G-{e}. .“:
S
2 el
':’4'\'-.'-."-. A N e N A e TN S e S T R S O RS O n.:"‘:'. 3




If e is a bridge of G, then, by the choice of e, e is a pendent edge.
Therefore G-{e} has k~1 bridges and, by the induction hypothesis, P(G-
{e}) contains [El-k+1 affinely independent tours. All these tours can be
extended to tours of P(G) by adding the component Xo = 2. So dim P(G) >
dim P(G~-{e}) = |Ef=k.
Now assume that e is not a bridge of G. The graph G-{e} contains the
k bridges of G and possibly p new b;idges. say e1.....ep. By induction,

dim P(G-{el) = (|E|=1)~(k+p). Consider |E|-(k+p) affinely independent

tours of P(G-{e}). We can extend them to tours of P(G) by simply adding

the comnonent xezo. In addition, note that one of these tours, say ¥, can

be chosen~so that ‘i‘1=2 for every edge of a spanning tree of G-{e},0

otherwise, We will construct p+1 new tours from ¥. Let P be a path of G-

{e} joining the endpoints of e and such that !1>0 for every edge i of P.

Note that the p bridges e,....,ep belong to P. Define the tour x* by x} =

Xi for 1 £ P, x{ s !1-1 for £ ¢ P and x: = 1. In addition define the

tours xJ. J=1yeeeypy DY xi = Xi for
ife, ej and xi 0, xg = 2. So we have a total of (E[-k+!1 tours in
J

P(G). To show that they are affinely independent, let us subtract ¥ from

the |E|l-k others., We get the matrix

6Bt e P

O

.........
..........
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It 1s easy to check that the rank of this matrix is |El<k. So dim
P(G) > |El-k. ®
The rest of this section 1s devoted to identifying valid inequalities

and facets that define the polyhedron GTSP(G).

Theorem 2.3 The inequality x_ > 0 defines a facet of GTSP(G) if and only

e
if the edge @ is not a bridge of G.

Proof': If e is a bridge of G, then x_, > 2 in every tour of G.

e
Conversely, if e is not a bridge, then let x be a tour such that xe = 0.
k (Such a tour exists since G-{e} is connected.) The tour x and the |E}-1

tours x+2y1, ife, are affinely independent, where yi is the unit vector

suchthatyi=1andyj--OforJaéi.l

For any node set S & N, we denote by G(S) the subgraph of G induced

by S.

Theorem 2.4 Let U be an edge cutset with shores S and §. The valid
inequality x(U) > 2 is a facet of GTSP(G) if and only if the graphs

G(S) and G(S) are both connected.

Proof: 1If, say, G(S) is not connected then let s1 < S be a node set which
induces a connected component of G(S). Then the cutset 6(51) is strictly
contained in U. Therefore the valid inequality x(6(81)) > 2 is stronger
than x(U) > 2, showing that the latter inequality cannot produce a facet.
Conversely, assume that G(S) and G(3) are both connected, For each

u ¢ U, let xv be a tour such that x: z 2 and xz z 0 for every e ¢ U={u}.
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Let x%* be one of the |U} tours just defined. Consider the tours x%+2y",

-
i

.-';'."'.r‘,;"'.":. 3

for i ¢ E-U, where yi is the unit vector such that yi = 1 and yg = 0 for

l'l
»

J £1, The |E| tours x? : u e U} v {x'+2yi s 1 ¢ E-U} are affinely

independent and they all satisfy x(U) = 2. ®

It would be interesting to characterize the graphs G for which the

»~
i

T

& ' facets of Theorem 2.3 and 2.4 completely define the polyhedron GTSP(G).
! A small graph for which these facets are not sufficient is given in
p

Figure 1.
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Figure 1

Note that the vector x such that Xg = 1 for every e ¢ E satisfies the _y..

inequalities x(U) > 2 for every edge cutset U, yet it is not a tour. 1In .

fact this vector satisfies x(E) = 9 whereas it is easy to see that every

tour satisfies the inequality x(E) > 10. Actually the inequality x(E) 210 ..
1s a facet of the polyhedron GTSP(G) for the graph G of Figure 1. We will
prove this in the next section as a special case of a more general result, \:;:E
Paths with endnodes i and j are said to be internally node disjoint if L
they only meet in nodes i and j. When two distinct nodes of G are joined s‘;
by an odd number of internally node disjoint paths of length 3 or more, we :.:E
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will show in Section 3 how to generate a facet of GTSP(G), called path
inequality. These inequalities generalize the 3-star constraints defined

by Fleischmann [4] and the comb inequalities of Grotschel and Padberg [6].
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3. Facets of the Graphical Traveling Salesman Polyhedron

Let G = (N,E) be a connected graph. Given two disjoint sets of nodes

N.,N, € N, we denote by (N1,N2) the set of edges of G with one end in N1

172

and the other in NZ' In the following, when we refer to two edges of

(“1’N2)’ these two edges may or may not be distinct.

A k-path configuration (see Figure 2) is defined by

(3.1) an odd integer k > 3 and integers n, > 2 for i=1,...,k,

(3.2) a partition of the node set N into {A,Z.B§ for 1=1,...,k and

i
J=1,...ni}. For convenience, let Bé z A and Bn -1 g Z for

i

1=1’..o,k.

(3.3) The graphs G(Bé) are connected for {=1,...,k and j:o....,ni+1.

- i1
(3.4) The edge set (BJ,B:‘*_1

) 18 nonempty for every i=1,...,k and

J=0.-...ni.

* Seeaa

- - e - -
--— - -- .

Figure 2. A k-path configuration.

The path inequality corresponding to this configuration is defined by

k n1+1
(3.5) r £x >1+ £
ecE *° 121 P10

..\..\'1-'_-.’-.(- R Ny \}\}\}ﬁ}‘v’l\' RN \-.\- \;.\- R Wt e e e X -..; - -:_ : :-. oo e st ot e
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14
where
1 for e ¢ (A,2),
1j-pl for e ¢ (B;,B;). i=1,...,k and jép such that
'EIZ'T' :
J=pi £ Ny
i,r
(3.6) fe = max{np-1 - g-fT. n:-_1 - nP:Z} for e ¢ (BJ,BP)' iir'
r i r j=1....,ni and p=1.ooo 'nr’
0 otherwise.

An interesting special case is obtained when n;, = n > 2 for all
i=1,...,k. Such a configuration will be called n-regular. We can
multiply the inequality (3.5) by n-1 to obtain integer coefficients. We

get

(3.5') I gx >dkn+na+ k-1

etE ee —
where
n-1 for e ¢ (A,2),
|j'P| S_ n,

|J-P| + 2 for e ¢ (Bj.arp‘)’ i#r and J,p=1,....n.

0 otherwise.

When k=23 and n=22 this is exactly the 3-star constraint given by

Fleischmann [4].
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(n1+1)/(n1-1). The skeleton of a k-path configuration
1-1

is the set of all edges in (81,83*1) for i=1,...,k and j:O,....ni and all

edges with both ends in B;‘ for 1=1,...,k and j=0,....n1+1.

Theorem 3.1 Path inequalities are valid inequalities for GTSP(G).

Proof: Note that, since f, > O for all e € E, it suffices to prove the

validity of the inequality £ f‘e L > a for a complete graph in order to
e¢E

prove it for all graphs. To show the validity of the inequality I fexez a
ecE

vwe will show that, for the length function defined by the t'e's, the length
of any tour x is at least a.

First consider a minimum length tour x which only uses edges of the
skeleton., Any such tour has the following form., For some i#*=1,...,k and
J':O,...,ni.. the tour x uses a single edge of (Bj.Bi“) for 14i%* and it
uses two edges of (83'8321) except for j=zj* for which none is used. In
other words, k-1 of the paths joining A to Z are 'used once whereas the
last path is broken into two parts each used twice. The choice of the
values of the fe's is such that, for any i* and j®*, the length of x is a.

So, if a tour shorter than a exists, it must use some edges which are
not in the skeleton. Let x be a tour shorter than a such that the number

of edges not in the skeleton is minimum among all the tours which violate

the inequality.

It is easy to see that x does not contain any edge from (Bj.B:) for

121,000k and 2 < p=§ ¢ Ny since one can replace any such edge by a path
using one edge from each (B:.B:”). tzj,cc0sP=1. The resulting tour has

the same length but uses less edges outside the skeleton.
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Next we will show that x cannot contain an edge of (A,Z). Let e ¢

(B;.B;). réi. Without loss of generality fe = p/(nr-1) - (J-Z)/(ni-I) 2

J/(n1-1) - (p-2)/(nr-1). ‘l'heretore, (p-1)/(nr-1) 2 (J-1)(n1-1) and

S8, 8,0 0040,

fo 2 V/(n,-1) + 1/(n;~1). This shows that the shortest edges with one

node in the set B} belong to the skeleton. As a consequence, the shortest

- completion of an edge of (A,Z) into a tour of G uses a single edge of each

(83,83‘1). But such a tour satisfies (3.5). So x does not contain an

s et
con
it Lot
ST et
ACIREE S L A I
it

edge of (A,2). AR
- Now we use the fact that k is odd. Since x does not contain any edge \.
- ':-.?:
- from (A.Bz) for i=1,...,k and J=2,...,0,+1, there must exist some ,...\.]
8=1,...,k such that either 0 or 2 edges of (A.B:) belong to the tour x. L""

First assume that x does not contain any edge from (Bi,B;) where s is

o
) ta  tors

2 the index defined above, ifs, 1<ick, ,1=1,....n1 and Plyeceynge Then x

, contains two edges of each (B:,B:H), t=0,...,ns. except perhaps for one

, value of t. But then the tour obtained from x by taking the same edges

'. outside the sth path, taking one edge of each (B:.B:H). t=0.....ns. and

R one edge from (A,Z) yields a tour of length at most that of x, which we

Just saw is impossible.

So x must contain an edge from (Bg.B;) for some ifs, 1<i<k,

jz‘l,...,ni and p=1....,ns. Among all such edges, let e be one

- corresponding to the smallest value of p. By the choice of p and s, the

{ tour contains two edges of (B:,B:”) for every t=0,...,p=1 except perhaps

2 for one value of t, Since f, > j/(ni-1) - (9'2)/(“3‘1)' the tour obtained

'Z; from x by deleting e, replacing the edges of (B’.B:H), t=0yce.,p=1, DY

- one edge from each (B:,B:H). t=0,...,p=-1, and finally adding one edge

: from each (B:.B:”). t20,...,J=1, yields a tour of length at most that of

:‘: x and with one less edge outside the skeleton, which contradicts the

N

A minimality of x.
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This completes the proof. B

Theorem 3.2 Path inequalities define facets of GTSP(G).

Proof: Let eléa f

x, 2 a be a path 1nequa11ty (which we will refer to as
inequality 1 in this proof). Assume it does not define a facet, Then

there exists an inequality, say X, 2 a (inequality 2), such that the

ecl-:
face defined by the first inequality is contained in the facet defined by
the second. Our aim is to show that °e’fe for all e ¢ E.

First we show that c,=0 if e has both ends in the same set B; for
i=1,..,k and J:O.....niﬂ. Let x be a tour which satisfies inequality 1
with equality. (Such tours exist as we have seen in the proof of fI‘heorem
3.1.) The tour x must also satisfy inequality 2 with equality. Now
consider MZye where ye is the unit vector such that y:=1 and y:=0 for
tie.' Since fe=0, this tour satisfies inequality 1 with equality.
Therefore it must also satiqt‘y inequality 2 with equality. Since both x
and x<»2ye satisfy inequality 2 with equality, we must have ceao.

Next we show that c, has the same value for all edges in (Bj. j +‘l)
and then that this value does not depend on j. Let x be a tour which
satisfies inequality 1 with equality and which only uses edges of the
skeleton. As pointed out in the proof of Theorem 3.1, there exists such
an x which only uses one edge of (B?,B;”). say edge e, Modify x so that
In order

it uses another edge of (Bij'Bjn)’ say edge e_, instead of e,

2
to still have a tour we may have to change x within Bg and Bj“. but we

can keep x unchanged anywhere else. Since both tours satisfy inequality 1

(and therefore inequality 2) with equality we must have Cq = Cq o Now
1 2

let x be a tour of the skeleton such that one edge of (B;. ; +1) is used

o'fl

S

O-l\_n.i
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for all r#i and p=0,...,N and two edges of every (Bj,Bgﬂ) are used

r?
except for one index j=j¥. Any tour obtained from x by just changing the
. value of j* satisfies both inequalities with equality which proves that
there 1s a constant ci such that ce-ci for all e ¢ (Bj.BL‘). J=0,...4ny.
The tours just defined satisfy both inequalities 1 and 2 with equality for
any value of i=1,...,k. Hence, the constants <=1 must satisfy a system of

k equalities whose unique solution is c1 = 1/(n1-1) for i=1,.,. k.
Now let e®* be an edge not in the skeleton, and let x be a tour using
e* and edges of the skeleton, In addition, assume that x satisfies
inequality 1, and hence inequality 2, with equality. Such a tour exists

by our choice of the coefficients fe. Since ¢ e=t'e for all edges in the

[ arcan

skeleton, we must also have ce.=fe,. which completes the proof, B

\ ]

-
"
) We have pointed out earlier that TSP(G) — the convex hull of the
Q‘
:_ incidence vectors of the Hamilton cycles of G — 1is a face of the
A polyhedron GTSP(G). We will show how the path inequalities relate to
well-known facets of TSP(G).
A comb is defined by a set HOCN called the handle and k disjoint
subsets w1.....wk C N, k odd, called the teeth, each of these subsets
5: having a nonempty intersection with Ho. The comb inequality associated
. with the comb (W_,W,,...,W ) is
k k
£ x(y(w NL: |w1| - (3ket)/2.
10 i=0
Gr8tschel and Padberg [6] showed that these inequalities are facets of
4
! TSP(G) when G is a complete graph. .
3 i
.' TP e e AT AL {'
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Theorem 3.3 The path inequalities generalize the comb inequalities such

k k
that W, - v W, £ 08 and v W, £ N. More precisely, these comb
0 i=1 i i=0 1

inequalities define the same faces of TSP(G) as the 2-regular path

inequalities.

> a is one where

Proof: Recall that a 2-regular path inequality 2 fex

e€E ¢

n;=2 for all i=1,....k{ Let {A,Z.B%,Bé,i:l.....k} be the node partition
ko 4

which defines the corresponding path configuration. Let wo = AU( v 81)
i=1

and "1 = B: v B; for i=1,...,k. We will show that the comb inequality

assocliated with (WO,H1,....Hk) can be derived from the 2-regular path
inequality and the equations x(é(v)) = 2 for all v ¢ N.
These equations imply that, for any W< N, x(r(H)):lwl - x(w,i.")/z.

Therefore,

k K
£ x(y(W,)) t (IW,] - x(W, ,8.)72)
120 1 i1=0 1 171

k
t W
i=0

| «( ¢ g.x )2, as defined in (3.6')
1 eeE ee
k

I IW,| - (3ks1)/2, by (3.5'). B
1=0 i

in

An obvious question at this point is whether the comb inequalities

k k
with either Ho- u "1 =for v "1 = N can also be generalized to facets
i=1 i=0

2 R AN AT IR R

ARG COLRRNIN,
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of GTSP(G). We will show that this is indeed the case using the concepts i
i of wheelbarrow configurations and bicycle configurations, These ‘
configurations are very similar to k-path configurations, the main _*
differences being that Z=0 and A=2Z=p respectively,
. More specifically, a wheelbarrow configuration (see Figure 3) 1is .
defined by | .
_~ (3.7) an odd integer k>3 and integers n1_>_2 for i=1,...,k,
l (3.8) a partition of the node set N into {A.B} for 1=1,...,k and n
3=1,0.09ny}. For convenience, let BtzA.
(3.9) The graphs G(B}) are connected for iz1,...,k and 3=0,0000my.
; (3.10) The edge set (Bj,Bgn) is nonempty for every i=1,...,k and "‘
320,000 =1.

(3.11) The edge set (B:li :I11) is nonempty for every i=1,...,k.

+
.-.: In (3.11) and in the remainder of this section, the index i+1 is :::'E?

v
7,

defined to be equal to 1 when izk., In general indices will be defined 2o

modulo the largest value that they can assume.

¥ Ao
.;l

A bicycle configuration (see Figure 3) is defined by

a3

q'l.li-
CeteteTea

(3.12) an odd integer k>3 and integers nizz for 1=1,...,k,

™~

L (3.13) a partition of the node set N into {B§ for i=1,...,k and :
:; 381’000"‘1}0 ';:.E:
. p':-j.
e (3.14) The graphs G(Bj) are connected for i=1,...,k and j=1....,n1. f'f;
pi e
L (3.15) The edge set (Bg. ; 1) 1is nonempty for every i=1,...,k and
::". J"v-ovvni"- .::-::‘
2 141 1 4 R
(3.16) The edge sets (B1 .B ) and (Bn 'Bn ) are nonempty for every
) i i+ o
% 1’1,..0.k0 5B
i i
:": heth
e ".\
o {.:
;, e e
-:: ::E-
;":r' i e B T e e A T PN AR A b L R AN n
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Figure 3. A vheelbarrow and a bicycle

The wheelbarrow 1nequa1i§y associated with a wheelbarrow

configuration and the bicycle inequality associated with a bicycle

configuration are both defined by

(3.17) I fx >a
eeE ee

where a is as defined earlier and

{ %f:%l for e ¢ (BJ'BP)' i=1,...,k and jép such that |j-pi<n,,

= p -2 -2 i.r
(3.18) £, = nm{n—';r - 'J‘F" a—i: - ';PL_{) for e e (B3,80), 14r,

J=1,...,n1 and p=1.ooo .nrp

.\ O otherwise,

As earlier, a n-regular configuration is obtained when ny =21 2 2 for
.11 131’¢oo'ko The inequality (3017) becoms
(3.17') I gx,2kn+k+n =1
eckt

where
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13-pl for e c(Bj,B:). iz1,...,k and jép such that
. 1J=p1 < n,
(3.18') g, = |j=pl+2 for e c(Bi,B;). 14r and §,p=1ye...n,
V] otherwise .

Theorem 3.4 Wheelbarrow and bicycle inequalities are valid inequalities

for GTSP(G).

Proof: First consider a wheelbarrow configuration {A.B§ for {=1,...,k and

j=1.....ni} and the associated inequality. Let G' bhe the graph
constructed from G by adding a node z joined to at least one node in each

1 for i=1,...,k. This defines a k-path configuration in G', namely

i

[A,{z},Bg for {=1,...,k and J=1.....n1}. Extend the definition of fe to
every edge in G' using (3.6). We know that, for the length function
defined by the fe's. every tour of G' has length at least a,

Now lét x be a minimum length tour of G. We can assume that x does
not contain any edge from (Bj,B") for p > j+2 since this edge could be
replaced by a path of the same length using one edge of each ( :. : 1)
Czlyeeeyp=1,

If x does not use any edge from (B},B;) for i4r and J=lyecesnyy

k
Pzlyec.,n, then its length is 1:1 2n;/(n;=1) > a. So assume that x uses
such an edge.

Among all such edges, let e be one corresponding to the largest
possible value of p. Say ¢ ¢ (51.5;). Then by our choice of p, the tour

x contains two edges of (B:.B:”) for tap,...,nr-h if pn,. Let x' be
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\ the tour of G' defined as follows. Remove the edge e from x and , if
p<nr. remove also one edge from each (B:.B: +1) for tzp,...,nr-1. Then add
one edge from (B; ,{2)) as well as one from ({z}.B: ) and one from each
. r 1
' b . | - p b
(By B, 4)0 t=Jyeeoyn =1, Since f_ > AT - E-T the tour x is at least
" as long as the tour x'. So x' has length at least a.
:_; Now consider the case of a bicycle configuration. We construct a
. graph G'' by adding to G a node a joined te each B:‘ for i=1,...,k. We
will use the fact that the wheelbarrew inequality asseciated with {{g}.Bi
for is1,...,k and j=1,...,n;} is valid in G''. Given a minimur length
tour x of G with ne edge from (B},B;) for p > j+#2, let e be an edge of
- (B;,B;), i#r, corresponding te the smallest value of p. Remove from x the
edge e and, if necessary, one edge from each (B:,B:H) for t=1,...,p-1.
. Then add one edge frem (B:.{a}). one frem ({c},B%) and one from each
N
(B{,B;, ), t=1,...,3=1. Since £, 2 # - s:—_z_f. the tour x'' of G'' just
~
constructed is at west as long as the tour x. Therefore @ f x, 2
- ect A
. I £x'">a, B S
i e‘E e e - :~ .-‘,
e
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e -‘.'b_;'
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Theorer 3.5 Wheelbarrow inequalities define facets of GTSP(G)., Bicycle ]
sad

inequalities such that the edge sets (B},Bf*z) and (B: ,B:*Z) are nenempty -
i o
for every i=1,...,k, define facets of GTSP(G), 33:
0
o]
Progf: The preoof is very similer te that of Theorem 3.2. Let fexe<3 a ' i*
ecE i
be an inequality asssciated with a wheelbarrew or a bicycle cenfiguratien. r:
(We will refer te this inequality as inequality 1 in this preef.) Sinece -

it is satisfied with equality by seome tours (see Figures U4 and 5), it

defines a face of GTSP(G). Let = CeXe 2 8 (inequality 2) define a facet
eeckE

which contains the face defined by inequality 1, We will show that G, = fe

for all ecE. As in the preef of Theorem 3.2, we must have ce=0 for every
i
J'
assume the same value for all the edges in the edge set (Bg.B§+1).

edge e with beth ends in B i=1,,..,k and js(o,)1,2,...n1. and e, mist

New consider the wheelbarrow inequality and the tours of Figure 4(a)
where we vary the index j of the set (83.83*1) whose edges are net used in
the teour. Since all these tours satisfy inequality 1 (and therefore
inequality 2) with equality, there must be a ceonstant ci such that °e=°i
for every edge ec(B1 B1

I
the tours of Figures 4(a), (b) and (¢) we get the following equatiens, for

) and every J=0,...,n1-1. Furthermwore, comparing

i21,...,k, where b, is the value of o, for e ,(3: ’Bni+1).
i i

o b a_yot.

i
bi—1 + b1 + (ni-Z)c z bi—1 +n,

i

O ae e
o o o e

The selutien ef this system is c1 = _ag andb, = o «+ a fer

ni-l ni-l "1+1'1
i21,...,k. Writing eonce more that the tours of Figure U4 satisfy ~—
aed
inequality 2 with equality, we get g=1, Se °e‘fe for all the edges of the 5§S
I. . q
Iy
skeleton, fiﬂ

.\
e T N N
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(a)

(b)

(e)

Figure 4, Tours satisfying the wheelbarrow inequality with equality.

RS

New consider the bicycle inequality and the tours of Figure 5(a) ;Eﬁs

-:\;:..l

where we vary the index j of the set (BE.B§+1) which deoes not have any }:33

i i

edge in the tour, This shows that there is a constant e¢  such that 8 =¢

r} s{':
N
y :.:.‘O N

P

for every e ;(33,83‘1) and every J=1.....ni-1. Let b, be the value of o,

s
"
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for e c(Bi .Bi+1 ) and d, the value of ¢ for e c(Bi.Bi*1). By cemparing
I& 'i-ﬂ i e 1”1
the tours of Figures 5(c) and 5(d), we get
i ivl
bi + (n1-1)c 2 di + (n1’1-1)c .
By cowparing the tours of Figures S(e) and 5(f), we get
i_ ie1
di + (n1-1)c =z bi + (ni+1-1)c .
% This implies that bisdi and that (n1-1)ci s (ni*1-1)ci*1. Therefore,
a there exists a censtant q such that ci = a o for isl,...,k. Finally,
9 ni-1
5 comparing the tours of Figures 5(a) and 5(b) we get
> i - i+2
(ni-Z)c + b1+di = (ni+2-2)c + bi+1 + d1*1‘

o This implies bi = d1 = @ + a . Writing that the tour of Figure 5(a)
e ni-1 ni+1-1

'é satisfies inequality 2 with equality, we get a=1. Se °e=fe for the edgea

b of the skeleton.

S
:? Finally, we have teo determine e for the edges which are net in the
o
3? skeleton of the wheelbarrew or bicycle configurations. For each such edge

e® ye will show that there is a tour which uses the edge e® and only edges

of the skeleton, and which satisfies inequality 1 with equality. The fact

.. that this tour also satisfies inequality 2 with equality will imply that

. Cen=len-

ie1 _i+1 !
e When e® c(BJ ,Bp ) 120,...,k=1, and p=322, it is easy te cbtain the -

!
B
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required tour by medifying the tours
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Figure 5 Tours satisfying the bicycle inequality with equality.

of Figures 4(b) and 5(d), se that they use the edge e® instead of the path
i+1 _iel
(Bt ’Bt+1)’ tzj’ o-o’p-1o
When et c(B}.B;) for i#r, the required tours are given in Figure 6.

Without less of generality we assuwed that f, =_J _p=2_> __p_ _ Jj=2
n, -1 1 -1 n -1

i Beml By i
in the figure. Note that the cycle (Bh ,Bh+1 ), h=1,...,k is breken into
By Phed
twe sections when B: and B: are removed, one of them being possibly

1 r

empty. One of the sections contains an even number of sets Bh s the other

"n

contains an odd nurber, The pattern of the tours is different in the edd

and even sections. In particulsr the pattern for the bicyclé
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:' configurations requires edges in some of the sets (B?'Z,B};) and (B:'2 .B: )
N h-2 "h
for h in the odd section. :-
il .‘-::'
X This completes the proof of Theorem 3.5. M o
< e
A e
i ! o
‘ e* " ';
f ot e
l { i '
: S N .
i b N R
.. it ¢ .~‘
5 Figure 6. =
- -
._ Theorem 3.6 The path, wheelbarrow and bicycle inequalities generalize all -_:
[ -.; the comb inequalities. ’_a
:jj Proof: The proof of Theorem 3.3 is still valid when Z=p and/or when A=p. @
% S
We conclude this section with another class of facets of GTSP(G). A i
- 0
_' hypohamiltonian graph is a nonhamiltonian graph such that the deletion of -::
RAS
:',: any node yields a hamiltonian graph. The Petersen graph is a classical ' ':
-; example of a hypohamiltonian graph. Let A1,...,Ak be a partition of the _ M
~ .:_\:
i,, node set of Gz=(N,E) with the following properties: Z::::;
4 w
oy (3.19) each graph G(A,) is connected, 1z1,...,k, ;'.x
Z:j (3.20) The graph G* obtained by shrinking each set Ai to a single node a, ‘;Z-_‘_
- contains a hypohamiltonian subgraph which spans all the nodes a;, ;:E:E
- o
1’1,....ko T
‘: I*:..;::
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o Let H be an edge maximal hypohamiltonian subgraph of G®*, i,e,, the
‘ addition of any edge of G* to H would make H hamiltonian. Denote by F the

edge set of H. NS

S

Theorem 3.7 Let A1.....Ak be a partition of N satisfying the conditions :‘

(3.19) and (3.20), and let F be the edge set of a maximal hypohamiltonian

: subgraph of G#, Then the following inequality is valid and defines a

facet of GTSP(G). "

eig fexeleI + 1 __

' ~

1 ife t(Ai.AJ) and a;a; ¢ F, 3

where  f, ={2 1if e (A;,A;) and aa, ¢ F,

0 otherwise "

o

Proof: The fact that the inequality is valid is obvious. Assume_ that it

defines a face of GTSP(G) which 1s not a facet, and let e:E CeXe 2 INI + 1 :_;

be an inequality defining a facet of GTSP(G) which contains that face.

First note that cezo for every edge e with bqth ends in the same set '

Ai‘ Next we show that, for any given i=:1,...,k, the value of Cq is the "’

same, say ce=c1, for all the edges e ‘(Ai'AJ) such that °1°J ¢ F. Since

H - {ail is hamiltonian, there is a tour of H using a Hamilton cycle of \

H - {31} and some edge aay ¢ F twice. This tour satisfies [ foXo = INI+1 —

and therefore also g CoXy = INl+1. By changing the edge ec(Ai,AJ) such :

that a,a,eF, we get that o, is identical for all these edges, say ce=ei. -

Since this argument holds for any i=1,...,k, and since G is connected, the '-

constant c1 does not depend on i and c1=1.

=
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Finally, let e '(‘1’AJ) such that 31‘3 £ F. There exists a Hamilton EEE

. cycle which uses e and only edges of F., Since this Hamilton cycle is on ;j-
EE the face defined by & fexe'z INl+1, we must have cg=2. a2 EEE
4., Some Related Integer Polyhedra ;f‘

First consider the polyhedra P,(G) and PZ(G) defined in the ‘ E;;
introduction. Recall that P,(G) is the convex hull of the nonnegative ?;}

integer vectors x ¢ RE satisfying ;;;

;E (1.2) for each node v of G, the sum of the values xo Over the edges e éf;
: incident with v is even and at least 2. ;;5
The polyhedron PZ(G) is the convex hull of the nonnegative integer f:

ié vectors x ¢ RE satisfying ?;g
(1.3) the graph induced by the edges of G such that Xy > 0 is connected. :;;

b

i Theorem 4.1 The following system of linear inequalities are sufficient to ;ii
2 define P,(G) and P,(G). ;;:
P,(G) = {xer®: x>0 for all ee¢E and x(8(v))>2 for all veN}, ‘_'

Py(G) = {xRE: x(F)zp;1 for all FGE, where p 1s the number of

connected components of G\F £ (N,E-F)}. ii

Proof: To impose condition (1.2), add a triangle to each node veN. See :

Figure 7. Consider the b-matching problem with equality requirements at




each node (=2D at node v and D-1 at each of the additional nodes v' and
vit), Then the solutions of the b-matching problem are exactly the
nonnegative integer solutions satisfying (1.2), assuming that D is large.
Take D to be odd and large., Then the requirement at each node i of
the expanded graph 1s an even bi' so there is no blossom constraint in the

b-matching problem, In other words, the b-matching polyhedron is given by

Xe 2 0 ecE,

x"’ + x;' + x(8(v)) = 2D veN [here ¢ is defined in G},

' =
x; *+ xv = D=1 veN,

Tt -
X' +x, = D=1 veN,

xv,x"'.x;' 20 veN.

The variables x", and x",' are easily eliminated from this system.

remaining system in terms of xe. ecE and xv, veN, 1is

X 2 0 for all e¢E,
x, = x(8(v)) =2 for all veN,

x, 20 for all veN,

Again it is easy to eliminate Xy So we get

Py(G) = {xeR®: x_ > 0 for all ecE and x(8(v)) > 2 for all veN}.

Now consider Pz(G). The condition (1.3) can be stated using matroid

terminology. It says that x>y for any vector y which is the (0,1)-

. -
o,
.Q ..
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incidence vector of a spanning set of the graphic matroid associated with

G. Equivalently y* z 1~y is an independent set of the dual matroid M¥%,

VA et DAL
* 2w ant .
O AR

The system of inequalities describing the convex hull of the y%'s is ":
y*>o0, P
Y*(F) < r®(F) for all FSE, o
where r* is the rank function of M® [3]. r# is related to the rank ’*
function r of M by r®(F) = |F| + r(E=F) = r(E). So the convex hull of the
vectors y is :'Z
y S 1 ’ '
¥(F) > r(E) - r(E-F) for all FGE. '
Therefore the polyhedron P,(G) is I-:\
P,(G) = {(xe®E: x(F) 2 r(E) - r(E~F) for all FQE}.

For a graphic matroid, r(E) - r(E-F) is one less than the number of
connected components of G\F = (N,E-F), @ oo
R0
R
Def'ine P3(G) as the convex hull of the nonnegative integer vectors - ;,
xeRE satisfying
(1.4) the sum of the values x, on any edge cutset is at least 2. jg::'-i
Remark 4,2 P3(G)GP1(G) since all the constraints x(&(v)) > 2 which :;Z::
%
define P,(G) are also valid for P3(G). In general the inclusion is strioct. peg
~
: oS
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Remark 4.3 P3(G) C Py(G). In fact none of the inequalities x(F) > p-1

which define PZ(G) are tight for P3(G). It is easy to show that the
system x(F) > p for all FgE E, where p is the number of connected
components of G\F, is valid for P3(G). This follows by taking linear
combinations of the valid inequalities x, > 0 and x(F) > 2 for any edge

cutset F.

Remark 4.4 GTSP(G)¢& P3 and in general the inclusion is strict as shown by
the example of Figure 1. In that example, the point x‘=1 for all ec¢E is

an extreme point of P3(G) which does not belong to GTSP(G).

Remark 4.5 The extreme points of GTSP(G) are those extreme points of

P3(G) which are also extreme in P1(G).

Remark 4.6 GTSP(G) and P3(G) are both full-dimensional polyhedra and they

both have TSP(G) as a face,

Define the polyhedron Pn(G) as

Pu(G) z {xth: X, 20 for all e<E and x(F)>2 for all edge cutsets FGE},
In general Pu(G) has fractional extreme points. An interesting question

is to characterize those graphs G for which Pn(G) has only integral

extreme points, 1i.e., when P,‘(G):P3(G). We do not have a complete

characterization of these graphs but only a sufficient condition.
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A series-parallel graph is any graph that can be obtained by a
. recursive application of the following operations, starting from the graph
:’: consisting of two nodes joined by an edge.

(4.1) duplicate an edge (i.e., add an edge J'oining the same end nodes),
' (4.2) replace an edge uv by two edges uw and wv where w is a new node.
Series-parallel graphs will be discussed at greater length in Section

5. Here we just prove the following theorem.

Theorem 4.7 If G is a series-parallel graph, then P3(G)=Pu(6).

Proof: The theorem 1s true for the graph with two nodes joined by an
edge, Assume it is true for all series-parallel graphs with m edges. We
- will prove the theorem for series-parallel graphs with m+1 edges. Such a
i graph is obtalned from a series-parallel graph with m edges by operation

(4.1) (Edge duplication) or operation (4.2) (Node insertion).
If an edge is duplicated, then every edge cutset contains either both
the edge and its duplicate or neither of them., Therefore, if x is an

extreme point of P,(G), at most one of the two variables X, and

I O S A o SECAREAEY

assoclated with the edge and its duplicate takes a positive value and, by

[nd

!- the induction hypothesis, x must be integral. 7
If a node is inserted on an edge, then let i, and Xy be the two new ,._:1
“ edge variables. The new system of inequalities defining Pu(G) is made of .ij
t two copies of the former system, one with Xq¢ the other with Py instead . ""':
: of the variable associated with the divided edge, to which is added the \4
:.: constraint Xy * Xy 2 2. VWe want to show that every extreme point of the '::
!‘ new system is integral. A
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If x1=x2

must be integral by the induction hypothesis. So assume ::1>x2 for some

for some extreme point of Pu(G), then this extreme point

extripfe point. Note that no constraint involving x4, can be tight except
possibly x, + x, > 2. If even this constraint is not tight, then x, could
be decreased and therefore x was not an extreme point. Now assume Xq * X,
= 2. This equation determines the value of x, whereas the rest of the
syﬁtem defining X, has an integral solution by the induction hypothesis.
So x5 is integral too. Again the extreme point x is integral. @

We conclude this section with a property of the extreme points of
P,(G). Our theorem ‘can be proved using the next lemma.

A family of subsets {S,CN: i=1,...,k} is sald to be crossing 1if it
does not contain the empty set, it contains the complement of each of its
members and, finally, given any S, and s2 in the family such that s1¢82.
82¢S1. 81082 £ 0 and s, usz # N, then both 31ﬂ 82 and S1U52 belong to

the family. (The sets S,, and Sp are said to cross.)

Lemma 4.8 The family (S C N: x(S,8) = 2} is a crossing family.

Furthermore, if .."»1 and S, are two sets of the family which cross, then

2
:(s"52052-81)3x(81n82.m2)80, X(S.'-Sz.sf'sz) = X(sz-s."sz-s«') = 2 and

X(8,18,,8,=8,) = X(84018,,8,~8,) = x(5US,,5,-8,) = x(FTUS,,5,-5,) = 1.

Proof': Let S, and 82 be two node sets in the family such that s1¢ sz.

1

82¢s1. 811\ 32 £ 0 and 810 s2 £ N (1,e,, the sets 31 and 82 cross), Let.

33 = 31n32 and su s S,U 32.
3(83,33) 3 2(83.31-32) + 3(33.32-81) + X(SBQS.‘)
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2 x(8,,8,) = x(85,5,-8,) + x(35,5,) + x(5,=5,,5,-5,) + x(8,-5,,5,) f';lz
D ’(32'52’ z x(83.81-sz) . x(s3.5u) + X(8,=5,,8,-8,) + x(sz-s.l.su). .',;_._
@ Therefore \
x(81,8,) + x(8,,8,) = x(55,85) + x(3,,8,) + 2x(5,-5,,5,-8,) X
- Since x(S,,5,) = x(S,,5,) = 2 and x(85,5y) > 2, x(5,,8,) > 2, we deduce
that x(s3.53) = x(s,‘,SR) = 2 and therefore the family is crossing. In
3 addition we must have x(S,-S,,S,-S,) = 0. | f:
I Again summing the equations defining x(S,,5]) and x(sz.S;). but m
grouping the terms differently, we get x(S1.$;')+x(82.5;) = '
: x(3,-8 578)+(8,-8,,575;) + 2x(53.8;). Stnce x(5,8) = x(5,,5;) = 2
L ad x(5,-5,,5575)22, x(5,-8,,57=5,)22, we deduce that x(5,-5,,55-5,) = i
x(S,=8,,5,=53) = 2 and x(S,,5)) = 0. E\
Now substitute x(83.53). x(8,,5)) x(84,57), x(8,,53), x(s3.§;) and
i x(8,-8,,5,-S;) by their known .value in the equations defining x(S3.5;). .
: x(su,S;). x(S1.§;) and (82,33). We obtain a system of four equations with "
four unknowns whose unique solution is | "-

.v." ., - ).'.l"'p.'_:.'.n.'.v "

x(84,5,-8,) = X(53.8,-8,) = x(84=8,,5,) = x(5,=5,,5,) = 1. s » e

A family of subsets {.‘.’o1 s 121,...,k} 13 said to be nested if, for any

’ H‘ _‘:‘,‘.’;%';*'.‘.‘Q.: A'..’ 'l ...‘ ..-' --‘;

:':53
14§, either S,CS, or S,C3; or $,NSy = 0. A family of edge cutsets N
s
{(81.3;):1=1.....k} is said to be laminar if the family {Si:i=1.....k} is ’_
nested. o
,\: .-_:‘.
“ Any extreme point of the polyhedron Pu(G) can be defined as the ::::;\
o~ ‘_\“-
,:,, unique solution of a system of |E| equations of the form \
b. .
':; (%.3) X = o, uEO. and :.::
ti (“.“) l(sgs)-Z for (SQS)CB .:'.:
n: N
0o

*»
.
N ;.
"',‘j . b ] '0, { LY ‘c“f‘-' : ‘ " ‘ ’, hY f\}‘ ' Iy ] ' .,:- Y d‘,‘-“.'\ ".:-".‘u ) '.' ‘.~;.'~ . PR ";f s 'f.:l‘f.;.' ~..'.‘-‘-'l"'—‘~-‘. LRI \\’ n ~
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where EOGE, B is a family of edge cutsets and |B|+|E°I=IEL

Theorem 4.9 Let x be an extreme point of Pu(G). The system (4.3), (4.4)
of equations defining x can be chosenso that the edge cutsets in (4.4)

form a laminar family.

Proof: Assume that x is an extreme point of Pu(G) for which the theorem
does not hold. Consider a system of the form (4.3), (4.4) where the
family B of cutsets is such that a(B)sZ(|S|:(S,S)¢B) is minimum., We denote

this system by (EO,B).

Since B is not laminar, there exist (S,,5,) and (S,,5,) in B such
that S.@s,, S ¢S, and 5,08, £ 0.
First assume that 81082 £ N, Since the system defining x has rank

|El, any valid equation can be obtained as a 1linear combination of

equations in this system. In particular, by lemma 4.8, we have the valid

equalities x(8,-8,,57=5;)=2 and x(S,-8,,55-85)=2. So . -.:_-".1':-_..

x(31-529§1'52) H x(ﬂi x(si'gi) H (Si.gi)CB) + t(yexezecso)

x(S,=8,,55757) = £(8, x(8;,5,): (5;,5,)¢eB) » (8 xgsecE ) T
where I(a,:(S;,5,)eB) = £(8,:(S,5,)eB)=1. EE

Ir e, £ 0, we can replace x(s1.51)=2 in the system (Eo,a) by ‘-:“
x(s1-82,SF5;)=2 and still have a system whose unique solution is x. This ;1_7;::5_':‘;
contradicts the minimality of a(B). ‘.-g'\.-

Similarly B0 would allow us to replace x(S,,55)=2 in the system :'*
(E,,B) by x(82-81.52_-3'1'):2 contradicting the minimality of a(B). R

So we must have ay 2 By = 0. Now we use the following fact, proved

in Lemma 4.8. AR
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equations in the system (Ep»B), we must have 02=1 and B1=1. Therefore a

..
sy
]

new system whose unique solution is x can be obtained from the system
(EO.B) by replacing the equations x(s1.51)=2 and x(sz,52)=2 by %he two
- equations x(S,-SZ,SFS;)zz and 8(52—31.52_-5;)=2. This new system
. contradicts the minimality of a(B).
- Now assume that S,US,zN. Then S1=S?S? and S1=82-S1. so x(s1.s1) s
. x(Sz-Sps;:s?). Similarly x(Sz.Sz) z x(S,-sz.S'.l_-'SE). By replacing
x(S1.§1)=2 and x(82.§2)=2 in the system (E_,B) by x(s1-82.§1—-5;_)=2 and
x(52—31.5é_-5}2. we obtain a contradiction to the minimality of a(B).
This completes the proof of the theorem. B

This result seem—bo—h‘:': been proven independently by W. Cunningham

& in unpublished work on the polyhedron Pu(G).

- 5. The Steiner Traveling Salesman Problem in Series-Parallel Graphs.

Let G=(N,E) be a graph, %L:E*R a nonnegative length functionn and NEN

Oy a set of nodes called Steiner points. The Steiner tree problem is to find
tree ~
- a minimum length/\in G which spans the nodes of N, This problem is known

to be NP-hard. Similarly one can define the Steiner Traveling Salesman

g3 0
D
LA

: Problem as the problem of finding a minimum length cycle of G which goes EE
* at least once through each node of ﬁ'. We call such a cycle a Steiner ;-".\
tour. Recall that, in this paper, cycles may contain the same node or the
% same edge more than once., In both Steiner problems the nodes of N-N may :
:‘ or may not be on the tree or the cycle.

Many problems which are NP-hard in general graphs have been solved in \
:2 polynomial time in Series-Parallel graphs. Series-Parallel griphs ‘::-_:
. R

4
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(SP-graphs) were defined in Section 4, Takamizawa, Nishizeki and Saito

[8] and Wald and Colbourn [9] give linear time algorithms for various

Steiner tree problem. Ratliff and Rosenthal (3] selve the o

problems on SP-graphs, including thW:einer Traveling Salesman problem in ;:;;-.-j:

R

graphs that model a rectangular warehouse, where 'ﬂ' represents a set of :f_:ffj?;

points along the aisles, These graphs are series-parallel. In this .

section we show that the algorithm of Ratliff and Rosenthal can be

extended to all SP-graphs. The resulting algorithm runs in linear time.

We will also discuss briefly how the same technique can be used to solve vt
the Steiner tree problem in SP-graphs.

Consider a connected graph G with a two-node cutset, say {u,v}. Let

Define G; as the graph induced by S uiw,v} w1

S1 be the node set of a connected component of G(N-{u.v})ﬁnd 62 as the -

graph induced by the edges of G which are not in G,. Let T, and‘)}_be the

* restrictions of a Steiner tour of G to G1 and(irespecgively. We will -..‘:'f,"_f':

characterize a partial Steiner tour such as T1 by (a,b,c) where a 1is the ) “'*
parity of the number of edges of ‘I‘1 which are incident with the node u, b
is the parity of the num?? of edges of ‘1‘1 incident with v, and ¢ 1is the .___
number of connected components of ‘1‘1. The elements a and b can take the "‘"‘

values E (for even), U (for uneven or odd) and O (for zero) whereas ¢ can
take the values 0,1,0or 2. It is easy to enumerate all the possible

combinations of (a,b,c) which arise from partial Steiner tours.

Proposition 5.1 The partial Steiner tours can be partitioned into the

following seven classes: S
AL

(E,E,1),(E,E,2),(E,0,1),(0,E,1),(U,U,1),(0,0,1) and (0,0,0). :-_:
Y

ACE

VAN

Note that (0,0,1) means that N£S1, i.,e. there are no Steiner points ‘T

~o

e

in N-S1. Similarly (0,0,0) means that there are no Steiner points in ::-
T

S1U{UQV}0
R IR SUERARAN T e e
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Let 1‘1 and '1'2 be defined as above. Now let Ta be a partial Steiner

tour of G1 which belongs to the same class as ‘l'1. The partial tour T} is
also a valid completion of '1‘2 into a Steiner tour of G. So, in each
class, it suffices to keep a minimum length solution, Let l(a.b,c)(Gi) be
the minimum length of a partial Steiner tour of G1 in the class (a,b,c¢).

(Set %(a,b,c)(G;) = « if the class is empty). A minimum length Steiner
tour of G can be obtained by combining compatible partial tours and taking
the overall minimum length solution. (This is nothing but the optimality

principle of dynamic programming.) More precisely, the optimum solution

is obtained as the minimum of

£(U,0,1)(G) + £(U,U,1)(G,),

L(E,E,1)(Gy) + £(E,E,1)(G,),

" £(E,E,1)(G;) + %(0,E,1)(Gy), 5
: £(E,E,1)(G,) + £(0,0,0)(G,), S
.. l(E'EQZ)(G1) + ’.(E’E'1)(Gz)' _h.-;j
- CM(E,0,13(G) + E(E,E,1)(Gy), Ok
Z. 1(0’591)(61) + Q(EQED1)(02)! .’s:.i
5 £(0,0,0)(G,) + &(E,E,1)(G,), N
» S
2 $0,E,1)(Gy) + 0,E,1)(G)), 5;%
= £(E,0,1)(G,) + &(E,0,1)(G,), o
; 1(5,0.1)(61) + 1(0,000)(62)9 ?‘T:ij
- BN
4 £(0,0,0)(G,) + £(E,0,1)(Gy), S
- £(0,E,1)(G1) + £(0,0,0)(G,), e
. £(0,0,0)(G,) + £(0,E,1)(G,),

(s 1 2

‘

_: ’(000'1)(61) L J I(OQOQO)(Gz)D

l ..:.. ;; X ;).:I Sy -',. r-..;':!.;(. 'h'{ \"-'\‘. -\-'-qu-\-‘-‘-. ...'-:,-:_..':' \.r__
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In order to apply this procedure, the graph G must have a two-node Fo
cutset. In SP-graphs, two-node cutsets can be found recursively as I;I:j
follows.
If every node of G has degree at most two, stop. Otherwise the graph " -

G must contain some parallel paths joining the same endpoints, say u and \
v. [The existence of such paths follows by considering the sequence of -,.
o)

edge duplications and node insertions that led to the graph G and by 'w
considering the last edge duplicatons performed in this sequence.] To
find the nodes u and v it suffices to ignore the nodes of G which have H
-

degree two and to look for parallel edges in the resulting graph.

Now let G2 be;hg‘raph induced by one of the paths joining u and v and
let G, be the gr‘a:h induced by the other edges, The graph G, is anm ) F"
SP-graph with fewer,a\‘tshan G, and therefore the recursion can be applied to ) e
1°

To complete the description of the algorithm it suffices to show how

% I Dev

to find a minimum cost partial Steiner tour of Gz, for each of the seven

classes., See Figure 8.
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In cases (b), (c) and (g) there are no Steiner points between u and t and b'
_‘: between t' and v. In case (e), the nodes t and t' are two Steiner points §:§f:
such that there is no other Steiner point between them and the distance .-
- from t to t' is the largest among all pairs of nodes with this property. =
o Let us turn now to the Steiner Tree problem. Since there are no
ot parity requirements an edge is never taken more than once and there are r
;:'. only six classes to consider, namely :—
-’ ."".
2 (40,40,2),(£0,40,1),(£0,0,1),(0,£0,1),(0,0,1) and (0,0,0). The rest of S}I
2 ~
the algorithm 1is almost identical to the algorithm for the Steiner o~
oo Traveling Salesman problem, so the details are left to the reader., :-‘
L "~y
Y 3
: 25
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We conclude this section by noting that, although we have a

polynomial algorithm for the Steiner Tree and Steiner Traveling Salesman

<
B

problems in SP-graph, we do not have a description of the corresponding

integer polyhedra.
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